ANNALS of the ORADEA UNIVERSITY.
Fascicle of Management and Technological Engineering, Volume IX (XIX), 2010, NR3

FINITE ELEMENT ANALYSIS OF SUPERPLASTIC
FORMING PROCESS, USING FLUENT (ANSYS)

GREBENISAN Gavril', ROMOCEA Sanda’
“University of Oradea, *>-Drumuri Judetene Bihor
grebe@uoradea.ro

Keywords: Finite Element Analysis, superplastic forming, numerical methods, FLUENT

Abstract: Settings of the ANSYS software, into FLUENT Analysis System, starting with modelling of analysis
work, are presented in this paper. Using geometry and mesh models, [10], one present relevantly steps of a
simple analysis of superplastic forming, using, as work agent, the air pressure. This is the reason because
the FLUENT Analysis System were chosen. The workpiece (an aluminum alloy, FORMALL 100), were
deformed, at 560 Celsius degrees, with 0,005 s” strain rate. Experimental data was compared with
theoretical data, the results obtained have confirmed hundred percents, material’s behaviour.

1. INTRODUCTION

The workpiece having 1.2.mm initial width, were deformed untill to reaching, aproximately,
7.5 mm in depth, the hemispherical chord, because the aim of this forming stage was the
study of superplastic behaviour, by measuring the width variation on various stages of
forming process, in order to issue conclusions referring on forming tendencies and on the
influence of temeprature maintaining on thinning degree of gasostatic formed pieces. This
workpiece were sectioned and measured on 20 different points also an workpiece
completely deformed, at 17.5 mm in depth, also were sectioned and measured on 20
diferrent points. In oredr to obtain a deformed curve profile, were measured that 20 points,
on symetrical points situated on cross section of the workpiece.

2. ANALYSIS OF BEHAVIOUR MODEL
Analysis model consists on following steps: type of phases, opportunity of energy calculus,
type of flow, defined such as showed on next captures:
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Figure 1-Type of analysis, a), and energy calculus enabled, b)

In order to set up the turbulence and/or laminar type of fluid flow dynamic, one should
choose this from a set of options available on FLUENT Analysis System. For this case one
have chosen a “laminar” flow of air, as work agent, and the governing equation is stated as
two k-epsilon type. The k-epsilon Model may be chosen from three options (Standard,
RNG and Realizable), most appropriate one is Realizable, for this case. Fluid flow, into the
nearest of the wall of die, will be treted as default parameters (implicit), also Prandtl
Numbers:
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Figure 2 — Laminar flow settings, a), and type of governing equation, b)

3. DEFINING MATERIALS

There should be defined two types of materials: fluid (air, as work agent), and aluminum,
for workpiece material. The die will be considered such as environment enclosure, which
not interact with other materials, and no influences towards fluid and workpiece materials
properties. Setting up materials consists on third chapter of Problem Setup, namely third
analysis section. This is one of most important section of the analysis, because here one
define the behaviour of the next manufactured article.
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Figure 3 — Defining materials, a)-fluid, b)-air properties

The properties of fluid, named “air’, will be chosen from ANSYS (FLUENT) materials
database. These properties have to be copied from ANSYS (FLUENT) datanase into
workspace settings. If user materials needs to be defined, the database materials, for
default general database of materials properties, there one should define this such “user
defined material”’, but in this case, “air’” is commonly gas, work agent defined. No
necessary, more properties to be defined.
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Figure 4 — Setting up “air” properties

4. THE ZONES CELL CONDITIONS
Cell zone Conditions reffers to “neighbourhoods” of interest, in which materials, or flow

conditions are changing, during process occurs. This implies to define zone and material
name, also rotation-axis direction, if this should be defined:
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Figure 5 — Cell zone conditions, a), and bondary conditions, b)

5. INITIALIZE THE SOLUTION

Once settings are made, the solution initialization may be done, using options available on
FLUENT Analysis System. For many complex flow problems such as superplastic forming,
flow convergence can be accelerated if a better initial solution is used at the start of the
analysis. The Full Multigrid initialization (FMG initialization) can provide this initial and

approximate solution at a minimum cost to the overall computational cost effort:
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Figure 6 — Flow convergence (using FMG)

The FMG it's a procedure for initialization and may be accessed on using the text user
interface (TUI) once the standard flow initialization is performed. The result of FMG
procedure offered by ANSYS FLUENT consists first of all on output the multigrid level
information followed by convergence history for the Full-Approximation Storage (FAS)
multigrid cycle on each level. The normalized residual value is printed after ten FAS cycles
or when the number of FAS cycles is reached. The output will indicate when convergence
is reached on each level and when the solution is being interpolated to the next level, [15]:
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Figure 7 - Full-Approximation Storage multigrid cycle reached

6. MONITORS SETTINGS
In order to vizualize, online during the process occurs, or final results, one should be
setting the “Monitors”:
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Figure 8 —Setting up the monitors

One or more monitors may be setup. Default monitors are available on ANSYS FLUENT
system for “Residuals”, “Statistics”, “Moments” and others. This monitors will provide,
opportunity for reach the results and materials behaviour, on process occurs.

7. RUN CALCULATION

Most time calculation effort, comparable with meshing process, consists on finding
solution, namely run calculation. Depends on accuracy and complexity of process
analized, calculation of the solution spends time and computation effort:
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Figure 9 — Run calculation, solution complete

8. RESULTS-ANALYSIS OF PARAMETERS

Runing calculation and got the complete solution consists on more spectacular section of
each Finite Element Analysis. As you can see, into following figures, every parameters
which users set on “Monitors” section of this analysis may be analized, shown and
captured:
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Figure 10 — Monitor the pressure contours
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Figure 12 — Residuals plot
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9. CONCLUSIONS
The workpiece manufactured by superplastic forming (fig. 14) has cross sectioned to find
more accurately the thin wall variation:
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Figure 13 — Temperature contours

a)

Fig. 14: a)-deformed worpiece profile, b)-axial cross section, (zoom)

b)
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Performing Finite Element Analysis at this stage of deformed part, (shown on fig. 14), one
may study deformation strain state and distribution of stress (von Mises equivalent stress).
Using ANSYS- Static Structural facilities, it may view the uniformity of this distribution:
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Figure 15 — Von Mises equivalent stress, a)-start, b)-finish

The quality of analysis settings resides on quality of data obtained after simulation and
process parameters. The “safety factor” shows the accuracy of simulation and confirms
convergence of the paramaters, fig. 16. Red zone shows that the most exposed surface is
free surfaces of the workpiece, and contact zone (yelow and green) exhibit a restricted
area:

NNSYS

A: Static Structural (ANSYS)
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Figure 16 —Safety factor

The profile of deformed workpiece presented on next figure (fig. 17) captured on the final
of the process show the behaviour of the material, and are attached to the tetrahedron
mesh structure (spatial distribution). These images do not presents the real profile of the
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deformed workpiece, there are prezented the finite elements “charged” and “deformed” at
that stage:

1 A : Static Structural (ANSYS) - Mechanical [ANSYS Multiphysics]
Is Hel o o @S5 A QR
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Figure 17 — Total deformation

Finite Eelement Analysis using FLUENT ANSY'S offers many opportunities to study and
analyse process with behaviour complexity of materials and parameters.
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	The FMG it’s a procedure for initialization and may be accessed on using the text user interface (TUI) once the standard flow initialization is performed. The result of FMG procedure offered by ANSYS FLUENT consists first of all on output the multigrid level information followed by convergence history for the Full-Approximation Storage (FAS) multigrid cycle on each level. The normalized residual value is printed after ten FAS cycles or when the number of FAS cycles is reached. The output will indicate when convergence is reached on each level and when the solution is being interpolated to the next level, [15]:

